西北工业大学现代远程教育 专科人学测试数学复习大纲(第八版)

总体要求

数学科考察旨在测试中学数学基础知识、基本技能、基本方法,考察数学思维能力,包括:空间想象、直觉猜想、归纳抽象、符号表示、运算求解、演绎证明、体系构建等,以及运用所学数学知识和方法分析问题的能力.

考试分为理工农医和文史财经两类. 理工农医类复习考试范围包括代数、三角、平面解析几何、立体几何和概率与统计初步五部分. 文史财经类复习考试范围包括代数、三角、平面解析几何和概率与统计初步四部分. 考试中可以使用计算器.

考试内容的知识要求和能力要求作如下说明:

1. 知识要求

本大纲对所列知识提出了三个层次的不同要求,三个层次由低到高顺序排列, 目高一级层次要求包含低一级层次要求.三个层次分别为:

了解:要求考生对所列知识的含义有初步的认识,识记有关内容,并能进行直接运用.

理解、掌握、会:要求考生对所列知识的含义有较深的认识,能够解释、举例或者变形、推断,并能运用知识解决有关问题.

灵活运用:要求考生对所列知识能够综合运用,并能解决较为复杂的数学问题.

2. 能力要求

逻辑思维能力:会对问题进行观察、比较、分析、综合、抽象与概括;会用演绎、归纳和类比进行推理;能精确、清晰、有条理地进行表述.

运算能力:理解算理,会根据法则、公式、概念进行数、式、方程的正确运算和变形;能分析条件,寻求与设计合理、简洁的运算途径;能根据要求对数据进行估计,能运用计算器进行数值计算.

空间想象能力:能根据条件画出正确图形,概括图形想象出直观形象;能正确

地分析出图形中基本元素及其相互关系:能对图形进行分解、组合、变形.

分析问题和解决问题的能力:能阅读理解对问题进行陈述的材料;能综合应用 所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中的数学 问题,并能用数学语言正确地加以表述。

复习内容及要求

第一部分 代数

(一)集合和简易逻辑

- 1. 了解集合的意义及其表示方法. 了解空集、全集、子集、交集、并集、补集的概念及其表示方法, 了解符号 \subseteq , $\not\subset$, =, \in , $\not\in$ 的含义, 并能运用这些符号表示集合与集合、元素与集合的关系.
 - 2. 了解充分条件、必要条件、充分必要条件的概念.

(二)不等式和不等式组

- 1. 了解不等式的性质. 会解一元一次不等式、一元一次不等式组和可化为一元一次不等式组的不等式, 会解一元二次不等式. 会表示不等式或不等式组的解集.
 - 2. 会解形如 $|ax+b| \ge c$ 和 $|ax+b| \le c$ 的绝对值不等式.

(三)函数

- 1. 了解函数概念, 会求一些常见函数的定义域.
- 2. 了解函数的单调性和奇偶性的概念, 会判断一些常见函数的单调性和奇偶性.
- 3. 理解一次函数、反比例函数的概念, 掌握它们的图象和性质, 会求它们的解析式.
- 4. 理解二次函数的概念, 掌握它的图象和性质以及函数 $y = ax^2 + bx + c(a \neq 0)$ 与 $y = ax^2(a \neq 0)$ 的图象间的关系; 会求二次函数的解析式及最大值或最小值. 能运用二次函数的知识解决有关问题.
- 5. 理解分数指数幂的概念, 掌握有理指数幂运算性质. 掌握指数函数概念、图象和性质.
 - 6. 理解对数的概念, 掌握对数的运算性质. 掌握对数函数的概念、图象和性质.

(四)数列

- 1. 了解数列及其通项、前 n 项和的概念.
- 2. 理解等差数列、等差中项的概念, 会灵活运用等差数列的通项公式、前 n 项和公式解决有关问题.
- 3. 理解等比数列、等比中项的概念, 会灵活运用等比数列的通项公式、前 n 项和公式解决有关问题.

(五)导数

- 1. 理解导数的概念及其几何意义.
- 2. 掌握函数 y = c (c 为常数), $y = x^n (n \in N_+)$ 的导数公式, 会求多项式函数的导数.
- 3. 了解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的 单调区间、极大值、极小值及闭区间上的最大值和最小值.
 - 4. 会求有关曲线的切线方程, 会用导数求简单的实际问题的最大值与最小值.

第二部分 三角

(一)三角函数及其有关概念

- 1. 了解任意角的概念, 理解象限角和终边相同的角的概念.
- 2. 了解弧度的概念, 会进行弧度与角度的换算.
- 3. 理解任意角三角函数的概念. 了解三角函数在各象限的符号和特殊角的三角函数值.

(二)三角函数式的变换

- 1. 掌握同角三角函数间的基本关系式、诱导公式, 会运用它们进行计算、化简和证明.
- 2. 掌握两角和、两角差、二倍角的正弦、余弦、正切的公式, 会用它们进行计算、化简和证明.

(三)三角函数的图象和性质

- 1. 掌握正弦函数、余弦函数的图象和性质, 会用这两个函数的性质(定义域、值域、周期性、奇偶性和单调性)解决有关问题.
 - 2. 了解正切函数的图象和性质.
 - 3. 会求函数 $v = A\sin(\omega x + \varphi)$ 的周期、最大值和最小值.

4. 会由已知三角函数值求角,并会用符号 arcsin x, arccos x, arctan x 表示.

(四)解三角形

- 1. 掌握直角三角形的边角关系, 会用它们解直角三角形.
- 2. 掌握正弦定理和余弦定理, 会用它们解斜三角形.

第三部分 平面解析几何

(一)平面向量

- 1. 理解向量的概念, 掌握向量的几何表示, 了解共线向量的概念.
- 2. 掌握向量的加、减运算. 掌握数乘向量的运算. 了解两个向量共线的条件.
- 3. 了解平面向量的分解定理.
- 4. 掌握向量的数量积运算. 了解其几何意义和在处理长度、角度及垂直问题的应用. 了解向量垂直的条件.
 - 5. 了解向量的直角坐标的概念. 掌握向量的坐标运算.
 - 6. 掌握平面内两点间距离公式、线段的中点公式和平移公式.

(二) 直线

- 1. 了解曲线和方程的关系 , 会求两条曲线的交点。
- 2. 理解直线的倾斜角和斜率的概念. 会求直线的斜率.
- 3. 会求直线方程, 会用直线方程解决有关问题.
- 4. 了解两条直线平行与垂直的条件以及点到直线的距离公式. 会用它们解决简单问题.

(三)圆锥曲线

- 1. 掌握圆的标准方程和一般方程以及直线与圆的位置关系, 能灵活运用它们解决有关问题.
- 2. 理解椭圆、双曲线、抛物线的概念. 掌握它们的标准方程和性质, 会用它们解决有关问题.

第四部分 概率与统计初步

(一)排列、组合

1. 了解分类计数原理和分步计数原理.

- 2. 了解排列、组合的意义,会用排列数、组合数的计算公式.
- 3. 会解排列、组合的简单应用题.

(二)概率初步

- 1. 了解随机事件及其概率的意义.
- 2. 了解等可能性事件的概率的意义, 会用计数方法和排列组合基本公式计算一些等可能性事件的概率.
 - 3. 了解互斥事件的意义, 会用互斥事件的概率加法公式计算一些事件的概率.
- 4. 了解相互独立事件的意义, 会用相互独立事件的概率乘法公式计算一些事件的概率.
 - 5. 会计算事件在 n 次独立重复实验中恰好发生 k 次的概率.

(三)统计初步

1. 了解总体和样本的概念, 会计算样本平均数和样本方差.

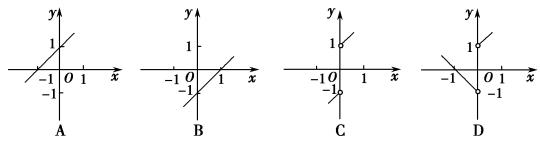
测试形式及试卷结构

本试卷均为选择题,30 小题,共100分.每小题给出的四个选项只有一个符合题目要求.

代数约 56%三角约 14%平面解析几何约 20%概率与统计初步约 10%

西北工业大学现代远程教育 专科人学测试数学辅导(一)

共计 50 道单项选择题,要求从所给出的四个备选项中选出一个符合题目要求的选项,并将正确的答案填入题目后面的括号内。


1.	下列集合不同一	于其他三个集合的	₫().	
	A. $\{x x = 1\}$		B. $\{y (y-1)^2=0\}$	
	C. $\{x=1\}$		D. {1}	
2.	设全集 U={1,2	2,3,4,5,6,7,8},集合	$S = \{1,3,5\}, T = \{3,6\}, 则[U(S \cup T)]$	等于().
	A. Ø	B. {2,4,7,8}	C. {1,3,5,6} D. {3	2,4,6,8}
3.	己知集合 M=	$\{x (x+3)(x-1) < 0\}$	$N = \{x x \leq -3\}$,则集合 $\{x x \geq 1\}$	}为().
	A. $M \cap N$		B. $M \cup N$	
	C. $(R(M \cap N))$		D. $\mathcal{L}_{\mathbf{R}}(M \cup N)$	
4.	不等式 $x^2 < 3x$	的解集是	().	
	A. $\{x x > 3\}$	B. $\{x x<0$ 或 x	C. R D. {2	x 0 < x < 3
5.	$x^2 + (y-2)^2 =$	0" 是 " $x(y-2)=0$	'的().	
	A. 必要不充分	分条件	B. 充分不必要条件	
	C. 充要条件		D. 既不充分也不必要条件	
6.	不等式 ax^2+5x	$c+c>0$ 的解集为 $\left\{ c^{+}\right\}$	$\left \frac{1}{3} < x < \frac{1}{2}\right $, 则 a , c 的值为().
	A. $a=6, c=$	1	B. $a = -6$, $c = -1$	
	C. $a=1$, $c=$	1	D. $a = -1$, $c = -6$	
7.	一次函数 y=	$-\frac{m}{n}x + \frac{1}{n}$ 的图像同时	经过第一、三、四象限的必要不	充分条件是
	().			
	A. <i>m</i> >1,且 <i>n</i>	<i>1</i> <1	B. <i>mn</i> <0	
	C. <i>m</i> >0,且 <i>n</i>	<i>ı</i> <0	D. <i>m</i> <0,且 <i>n</i> <0	
8.	如果 $\frac{1}{x} < 2$ 和 $ x >$	$\frac{1}{3}$ 同时成立,那么,	的取值范围是().	
	A. $\left\{ x \mid -\frac{1}{3} < x < \frac{1}{2} \right\}$		B. $\{x x>\frac{1}{2}, $ 或 $x<-\frac{1}{3}\}$	

$$C.\left\{x|x>\frac{1}{2}\right\}$$

$$D = \left\{ x | x < -\frac{1}{3}, \quad \exists x > \frac{1}{3} \right\}$$

- 9. 若不等式|ax+2|<6的解集为(-1, 2),则实数 a 等于().
 - A. 8

- B. 2 C. -4 D. -8
- 10. 函数 $f(x)=x+\frac{|x|}{r}$ 的图像是().

- 11. 如果奇函数 y=f(x)在区间[3,7]上是增加的,且最小值为 5,则在区 间[-7, -3]上().
 - A. 增加的且有最小值-5
- B. 增加的且有最大值-5
- C. 减少的且有最小值-5 D. 减少的且有最大值-5
- 12. 下列四组函数中,表示同一函数的是

A.
$$y = x - 1 = y = \sqrt{(x - 1)^2}$$

A.
$$y=x-1 = y=\sqrt{(x-1)^2}$$
 B. $y=\sqrt{x-1} = y=\frac{x-1}{\sqrt{x-1}}$

C.
$$v = 4 \lg x = 5 v = 2 \lg x^2$$

C.
$$y=4\lg x = y=2\lg x^2$$
 D. $y=\lg x-2 = y=\lg \frac{x}{100}$

13. 已知函数 $f(x) = \lg(x+3)$ 的定义域为 M, $g(x) = \frac{1}{\sqrt{2-x}}$ 的定义域为 N, 则 $M \cap N$

等于()

A. $\{x | x > -3\}$

B. $\{x \mid -3 < x < 2\}$

C. $\{x | x < 2\}$

- 14. 函数 $f(x) = \frac{x^3}{3} + x^2 3x 4$ 在[0,2]上的最小值是()
 - A. $-\frac{17}{3}$ B. $-\frac{10}{3}$ C. -4 D. $-\frac{64}{3}$

- 15. 已知函数 $f(x) = \frac{1}{2}x^4 2x^3 + 3m$, $x \in \mathbb{R}$, 若 $f(x) + 9 \ge 0$ 恒成立,则实数 m 的取 值范围是()
 - A. $m \ge \frac{3}{2}$ B. $m \ge \frac{3}{2}$ C. $m \le \frac{3}{2}$ D. $m \le \frac{3}{2}$

16. 曲线 $y=x^3-2x+1$	【在点(1,0)处的切线》	方桯为()	
A. $y = x - 1$	B. $y = -x + 1$	C. $y = 2x - 2$	D. $y = -2x + 2$
17. 已知直线 $y = kx + 1$	与曲线 $y = f(x) = x^3$	+ax+b 相切于点(1,3	3),则 b 的值为()
A. 3	в. —3	C. 5	D5
18. 数列 1,3,6,10, x,2	1,28, …中, 由给出	的数之间的关系可知	口 <i>x</i> 的值是()
A. 12	B. 15	C. 17	D. 18
19. 若数列{a _n }满足 36	$a_{n+1} = 3a_n + 1$,则数多	列 $\{a_n\}$ 是 $($)	
A. 公差为1的等	差数列	B. 公差为 $\frac{1}{3}$ 的等差	E数列
C. 公差为 $-\frac{1}{3}$ 的等	差数列	D. 不是等差数列	
20. 在等比数列{a _n }中	,满足 $2a_4 = a_6 - a_5$,	则公比是	()
A. 1		B. 1或-2	
C. 一1 或 2		D1 或-2	
21. 己知 $\{a_n\}$ 是等差数	例, $a_1+a_2=4$, a_7+	$-a_8 = 28$,则该数列前	前 10 项和 S ₁₀ 等于
()			
A. 64	B. 100	C. 110	D. 120
22. 下列命题正确的是			
A. 终边相同的角	一定相等	B. 第一象限角都:	是锐角
C. 锐角都是第一章	象限角	D. 小于 90°的角者	都是锐角
23. 若 $\sin \alpha = \frac{3}{5}$, $\alpha \in ($	$-\frac{\pi}{2}$, $\frac{\pi}{2}$), $\mathbb{D}\cos(\alpha +$	$\left(\frac{5\pi}{4}\right)$ 等于()	
A. $-\frac{\sqrt{2}}{10}$	$B.\frac{\sqrt{2}}{10}$	C. $-\frac{7\sqrt{2}}{10}$	$D.\frac{7\sqrt{2}}{10}$
24. 若 $\tan \alpha = 2$,则 $\frac{2s}{\sin \alpha}$	$\frac{\sin \alpha - \cos \alpha}{\cos \alpha}$ 的值为()	
A. 0	$B.\frac{3}{4}$	C. 1	$D.\frac{5}{4}$
25. 设函数 $f(x) = \sin(2x)$	$x-\frac{\pi}{2}$, $x \in \mathbf{R}$, \emptyset $f(x)$:)是()	
A. 最小正周期为	π 的奇函数	B. 最小正周期为	π的偶函数
C. 最小正周期为	的奇函数	D. 最小正周期为	$\frac{\pi}{2}$ 的偶函数

26.	设向量 a =(1,0), l	$b = (\frac{1}{2}, \frac{1}{2})$,则下列结	论中正确的是()
	A. $ a = b $		B. $a \cdot b = \frac{\sqrt{2}}{2}$	
27.	C. a // b 平行四边形 ABCD	中, <i>AC</i> 为一条对角线	D. $a-b$ 与 b 垂直 , 若 \overrightarrow{AB} =(2,4), \overrightarrow{AC}	$=(1,3)$,则 $\overrightarrow{AD}\cdot\overrightarrow{BD}$
	等于()			
	A. 6	B. 8	C8	D6
28.	在 $\triangle ABC$ 中,角 A	(B, C)的对边分别:	为 a 、 b 、 c ,已知 A =	$=\frac{\pi}{3}$, $a=\sqrt{3}$,
	<i>b</i> =1,则 <i>c</i> 等于()		
	A. 1	B. 2	$C.\sqrt{3}-1$	$D.\sqrt{3}$
29.	在 $\triangle ABC$ 中,已知	$a=1, b=\sqrt{3}, A=$	30°, B 为锐角, 那么	么角 $A \setminus B \setminus C$ 的大
	小关系为()			
	A. <i>A>B>C</i>	B. <i>B>A>C</i>	C. <i>C>B>A</i>	D. <i>C>A>B</i>
30.	$\triangle ABC$ 的内角 A 、	B、 C 的对边分别为。	a、b、c,若a、b、c	;成等比数列,且 <i>c</i>
	$=2a$,则 $\cos B$ 等	于()		
	$A.\frac{1}{4}$	$B.\frac{3}{4}$	$C.\frac{\sqrt{2}}{4}$	$D.\frac{\sqrt{2}}{3}$
31.	若 a , b , c 是 $\triangle AB$	<i>BC</i> 的三边,直线 <i>ax</i> -	$+by+c=0$ 与圆 x^2+	y ² =1相离,
则∠	△ <i>ABC</i> 一定是()			
	A. 直角三角形		B. 等边三角形	
	C. 钝角三角形		D. 锐角三角形	
32.	在 $\triangle ABC$ 中, A 与	B 恰满足 $\sin \frac{3A}{2} = \sin \frac{A}{2}$	$\frac{3B}{2}$,则三边 a 、 b 、 a	c 必须满足()
	A. $a=b$		B. $a = b = c$	
	C. $a+b=2c$		D. $(a-b)(a^2+b^2-$	$-ab-c^2$)=0
33.	设 m ∈ R ,则下列	式子正确的是()		
	A. $3-2m>1-2m$		B. $m^3 > m^2$	
	$C \cdot \frac{1}{m} < m$		D. $-2m > -3m$	
34.	不等式 $\left(\frac{1}{2}-x\right)\left(\frac{1}{2}+x\right)$	。 >0 的解集为()		

$A.\left(-\frac{1}{3}, \frac{1}{2}\right)$		$B = \left(-\infty, -\frac{1}{2}\right)$	$\frac{1}{3} \cup \left(\frac{1}{2}, +\infty\right)$
$C.\left(-\frac{1}{2}, \frac{1}{3}\right)$		$D(-\infty, -\frac{1}{2})$	$\left(\frac{1}{2}\right) \cup \left(\frac{1}{3}, +\infty\right)$
35. 已知 x_1 、 x_2 是	主方程 x ² -(k-2)x+k	$x^2 + 3k + 5 = 0 (k \in \mathbf{R})$	的两个实数根,
则 $x_1^2 + x_2^2$ 的最	大值为()		
A. 18	B. 19	C. $5\frac{5}{9}$	D. 不存在
36. 若直线 <i>x</i> =1 [的倾斜角为α,则α	等于()	
A. 0	$\mathrm{B}.\frac{\pi}{4}$	$C.\frac{\pi}{2}$	D. 不存在
37. 直线 <i>l</i> ₁ : 3 <i>x</i> -	y+1=0,直线 <i>l</i> ₂ 过	点(1,0),且它的倾斜	角是 l ₁ 的倾斜角的 2 倍,
则直线 12 的方	7程为()		
A. $y = 6x + 1$		B. $y = 6(x - 1)$	1)
C. $y = \frac{3}{4}(x - 1)$)	D. $y = -\frac{3}{4}(x)$	— 1)
38. 直线 <i>l</i> 过点(-	-1,2)且与直线 2x-3 ₂	y+4=0 垂直,则 <i>l</i>	的方程是()
A. $3x + 2y - 1$	=0	B. $3x + 2y +$	7=0
C. $2x-3y+5=$	=0	D. $2x - 3y +$	8=0
39. 已知点 A(1,	-1), B(-1,1), 则具	以线段 AB 为直径的	圆的方程是()
A. $x^2 + y^2 = 2$		B. $x^2 + y^2 = x$	$\sqrt{2}$
C. $x^2 + y^2 = 1$		D. $x^2 + y^2 = 4$	1
40.	=5 关于直线 <i>y=x</i> ヌ	寸称的圆的方程为()
A. $(x-2)^2 + y$	_	B. $x^2 + (y-2)$	$(2)^2 = 5$
C. $(x+2)^2+($	$(y+2)^2=5$	D. $x^2 + (y+2)$	$(2)^2 = 5$
41. 设 F ₁ , F ₂ 为5	È点, F ₁ F ₂ =6,动 _月	点 M 满足 MF ₁ + M	$F_2 =10$,则动点 M 的轨
迹是()			
	B. 直线 f点 F ₁ 、F ₂ 及动点 M		D. 线段 MF ₂ =2a(a 为常数),命
	h 迹是以 F_1 、 F_2 为焦		

A. 充分不必	要条件	B. 必要不充分	条件
C. 充要条件		D. 既不充分也	
43. 双曲线 $\frac{x^2}{m} - \frac{1}{3}$	y ² +m=1的一个焦点	为(2,0),则 m 的值为()
$A.\frac{1}{2}$	B. 1或3	$C.\frac{1+\sqrt{2}}{2}$	D. $\frac{\sqrt{2}-1}{2}$
44. 抛物线 y²=a	x(a≠0)的焦点到其浴	准线的距离是()	
$A \cdot \frac{ a }{4}$	$B.\frac{ a }{2}$	C. a	D. $-\frac{a}{2}$
	一天且每天至多安排	一至周五的 5 天中参加 一人,并要求甲安排在	
A. 20种	B. 30种	C. 40 种	D. 60 种
46. 某人向正东方	方向走 x km 后,向	右转 150°,然后朝新方	向走3 km,结果他离
出发点恰好是	$\sqrt{3}$ km, 那么 x 的	值为().	
$A.\sqrt{3}$	B. $2\sqrt{3}$	C.√3或 2√3	D. 3
47. 如图,用6和	中不同的颜色把图中	A、B、C、D 四块区域	成分开, 若相邻区域
不能涂同一和	中颜色,则不同的涂	法共有().	A B D
A. 400 种		B. 460种	
C. 480 种		D. 496 种	
48. 为了了解所加	巾工一批零件的长度	,抽测了其中 200 个氡	零件的长度,在这个问
题中,200个	零件的长度是().	
A. 总体		B. 个体是每一	个零件
C. 总体的一	个样本	D. 样本容量	
49. 样本中共有丑	1个个体,其值分别	为 a,0,1,2,3.若该样本的	平均值为1,则样本方
差为().			
A. $\sqrt{\frac{6}{5}}$	$B.\frac{6}{5}$	$C.\sqrt{2}$	D. 2
50. 从1、2、3、	4、5、6 这 6 个数号	字中,不放回地任取两数	数,两数都是偶数的概
率是().			
$A.\frac{1}{2}$	$B.\frac{1}{3}$	$C.\frac{1}{4}$	$D.\frac{1}{5}$

数学辅导(一)参考答案

1. C	2. B	3. D	4. D	5. B
6. B	7. B	8. B	9. C	10. C
11. B	12. D	13. B	14. A	15. A
16. A	17. A	18. B	19. B	20. C
21. B	22. C	23. A	24. B	25. B
26. D	27. B	28. B	29. C	30. B
31. C	32. D	33. A	34. A	35. A
36. C	37. D	38. A	39. A	40. D
41. A	42. B	43. A	44.B	45. A
46. C	47. C	48. C	49. D	50. D

西北工业大学现代远程教育 专科人学测试数学辅导(二)

共计 50 道单项选择题,要求从所给出的四个备选项中选出一个符合题目要求的选项,并将正确的答案填入题目后面的括号内。

1.	对于(1)3√2 [∉] {x x≤√	17\; (2) $\sqrt{3} \in \mathbf{Q}$; (3)0	∈N;	; (4)0∈∅.其中正荷	确的个数有().
	A. 4个	B. 3 ↑	C.	2 个	D. 1个
2.	设集合 A、B 都是	U={1,2,3,4}的子集,	己	知($[UA)\cap([UB)=$	$=\{2\}, ([UA) \cap B=$
	{1},则 A 等于().			
	A. {1,2}	B. {2,3}	C.	{3,4}	D. {1,4}
3.	不等式 $-x^2-x+2$	>0 的解集是().			
	A. $\{x \mid x \leq -2 $ 或 $x \leq -2$	≥1}	В.	$\{x -2 \le x \le 1\}$	
	C. $\{x -2 \le x \le 1\}$		D.	Ø	
4.	若集合 $A = \{x ax^2 -$	ax+1<0}=Ø,则实	数 a	的值的集合是	().
	A. $\{a 0 \le a \le 4\}$		В.	$\{a 0 \leq a \leq 4\}$	
	C. $\{a 0 \le a \le 4\}$		D.	$\{a 0 \leqslant a \leqslant 4\}$	
5.	使不等式 $2x^2-5x-$	3≥0成立的一个充分	分不	必要条件是().
	A. x<0		В.	x≥0	
	C. $x \in \{-1, 3, 5\}$	}	D.	$x \leqslant -\frac{1}{2} \vec{\boxtimes} x \geqslant 3$	
6.	若不等式(a-2)x ² +	2(a-2)x-4<0 的解约	集为	R,则实数 a 的	取值范围是()
	A. $\{a -2 \le a \le 2\}$		В.	$\{a -2 \le a \le 2\}$	
	C. $\{a -2 \le a \le 2\}$		D.	$\{a a\geqslant 2\}$	
7.	不等式(a+x)(1+x)<	<0成立的一个充分而	可不见	必要条件是−2 <x< td=""><td><-1,则 a 的取值</td></x<>	<-1,则 a 的取值
	范围是().				
	A. a≤−2	B. a≥2	C.	a < -2	D. a>2
8.	不等式(1+x)(1- x)>0 的解集为().			
	A. $\{x 0 \le x < 1\}$		В.	$\{x x<0 \perp x\neq -$	1}
	C. $\{x -1 \le x \le 1\}$		D.	$\{x x<1 \perp x\neq -1\}$	-1}

9.	不等式 1< x+1 <3 的	的解集为().					
	A. (0, 2)		В.	$(-2, 0) \cup (2, 2)$	4)		
	C. $(-4, 0)$		D.	$(-4, -2) \cup (0, -2)$	2)		
10.	已知函数 $y=f(x)$ 是	R上的偶函数,且不	生(一	-∞,0]上是减函	数,	若 f(a	$a) \geqslant f(2),$
	则实数 a 的取值范	围是().					
	A. a≤2		В.	a≤-2 或 a≥2			
	C. a≥−2		D.	-2≤a≤2			
11.	设 f(x)为定义在 R	上的奇函数,当 x≥	0 时	$f(x) = x^2 + 2x + $	-b+	1(b 为]常数),
	则 f(-1)=().						
	A. 3	B. 1	C.	-1	D.	- 3	
12.	函数 $f(x) = \lg(x-1)$	的定义域是()					
	A. $(2, +\infty)$	B. $(1, +\infty)$	C.	$[1, +\infty)$	D.	[2,	+∞)
	[2x-	-3, x≥1		_, ,			
13.	设函数 $f(x) = \begin{cases} x^2 - x^$	·3, x≥1 2x-2, x<1 , 若 f($(x_0) =$	=1,则 x ₀ 等于()		
	A1 或 3		В.	2或3			
	C1 或 2		D.	-1或2或3			
14.	函数 $y=x^3-2ax+$	a 在(0,1)内有极小值,	,则	实数 a 的取值范	围是	:()
	A. (0,3)	$B.(0, \frac{3}{2})$	C.	$(0, +\infty)$	D.	(-∝	, 3)
15.		^x 的单调递增区间为(
	A. $(-\infty, 2)$	B. (0,3)	C.	(1,4)	D.	(2,	+∞)
16.	曲线 y=e ^x 在点(2,	e²)处的切线与坐标结	轴所	围三角形的面积	为()	
	$A.\frac{9}{4}e^2$	B. 2e ²	C.	e^2	$D \cdot \frac{e}{2}$	2	
17.	已知函数 $f(x)=x^3$	12x+8 在区间[-3	,3]上	上的最大值与最小	値	分别为	M, m,
	则 M-m 的值为()					
	A. 16	B. 12	C.	32	D.	6	
1Ω	已知物列(a)滿足。	$a_1 > 0$, $\frac{a_{n+1}}{a_n} = \frac{1}{2}$, [1]	米 ケ万山	(3) 是		()
10.		$a_n = 2$				(,
	A. 递增数列		В.	递减数列			
	C. 摆动数列		D.	常数列			

19. 在等差数列{a _n }中	1,着 $a_3+a_4+a_5+a_6$	$+a_7 = 450$,则 $a_2 + a_8$	的值等于()
A. 45	B. 75	C. 180	D. 300
20. 在由正数组成的等	穿比数列{a _n }中,若 a	$a_{4}a_{5}a_{6}=3$, $\log_{3}a_{1}+\log_{3}a_{1}$	$g_3a_2 + \log_3 a_8 + \log_3 a_9$
的值为()			
$A.\frac{4}{3}$	$B.\frac{3}{4}$	C. 2	D. $3\frac{4}{3}$
21. 如果等差数列{a _n }「	$\pm . \ a_2 + a_4 + a_5 = 12.$	那么和十和十二十四	9
A. 14	B. 21	C. 28	D. 35
22. 计算 sin 43°cos 13			2. 33
		_	$\sqrt{3}$
$A.\frac{1}{2}$	$B.\frac{\sqrt{3}}{3}$	$C.\frac{\sqrt{2}}{2}$	$D.\frac{\sqrt{3}}{2}$
23. 已知角 α 的终边边	辻点 P(−8m, −6sin 3	30°), $\mathbb{E}\cos\alpha = -\frac{4}{5}$,	则 m 的值为()
A. $-\frac{1}{2}$	$B.\frac{1}{2}$	C. $-\frac{\sqrt{3}}{2}$	$D.\frac{\sqrt{3}}{2}$
24. 己知 α∈(0, π),	$\cos(\pi + \alpha) = \frac{3}{5}$,则 \sin	α等于()	
A. $-\frac{4}{5}$	$B.\frac{4}{5}$	C. $-\frac{3}{5}$	$D.\frac{3}{5}$
25. $y=\sin\left(x-\frac{\pi}{4}\right)$ 的图	像的一个对称中心是	()	
A. $(-\pi, 0)$	$B.\left(-\frac{3\pi}{4}, 0\right)$	$C.\left(\frac{3\pi}{2}, 0\right)$	$D.\left(\frac{\pi}{2}, 0\right)$
26. 若向量 a =(1,1), h	$\mathbf{c} = (2,5), \ \mathbf{c} = (3, \ \mathbf{x}), \ \mathbf{c}$	满足条件(8 a−b)·c =	30,则 x 等于()
A. 6	B. 5	C. 4	D. 3
27. 若 e ₁ 、 e ₂ 是夹角为	$\frac{\pi}{3}$ 的单位向量,且向	量 $\mathbf{a} = 2\mathbf{e}_1 + \mathbf{e}_2$,向量	$\mathbf{b} = -3\mathbf{e}_1 + 2\mathbf{e}_2$,则
a·b 等于()			
A. 1	В. —4	C. $-\frac{7}{2}$	$D.\frac{7}{2}$
28. 在△ABC 中,a²-	$-c^2+b^2=ab$,则角 C	C大小为()	
A. 60°	B. 45°或 135°	C. 120°	D. 30°
29. 在△ABC 中,a、	b、c 分别是角 A、E	B、C 所对边的边长,	若(a+b+c) (sin
$A + \sin B - \sin C$	=3a·sin B,则 C 等于	- ()	

	$A.\frac{\pi}{6}$	$B.\frac{\pi}{3}$	$C.\frac{5}{6}\pi$	$D.\frac{2}{3}\pi$
30.	在△ABC中,若sir	n A=2sin B·cos C, si	$n^2A = \sin^2B + \sin^2C$,	则△ABC 是()
	A. 直角三角形		B. 等腰或直角三角	自形
	C. 等腰直角三角形		D. 等腰三角形	
31.	在△ABC中,A=6	50°,且最大边长和最	分小边长是方程 x²-7	/x+11=0 的两根,
	则第三边的长为()		
	A. 2	B. 3	C. 4	D. 5
32.	在△ABC 中,已知	$a^2 = b^2 + bc + c^2$, 则	A 为()	
	$A.\frac{\pi}{3}$	$B.\frac{\pi}{6}$	$C.\frac{2\pi}{3}$	$D.\frac{\pi}{3}$ $\mathbb{R}^{\frac{2\pi}{3}}$
33.	若a、b、c∈R, a>	·b,则下列不等式成	立的是	()
	$A \cdot \frac{1}{a} < \frac{1}{b}$	B. $a^2 > b^2$	$C.\frac{a}{c^2+1} > \frac{b}{c^2+1}$	D. $a c > b c $
34.	已知集合 $A = \{x x^2$	-5x+6≤0}, 集合 l	$B = \{x (2x-1)^2 > 9\},$	则集合 A∩B 等于
()			
	A. $\{x 2 \le x \le 3\}$		B. $\{x 2 \le x \le 3\}$	
	C. $\{x 2 \le x \le 3\}$		D. $\{x -1 \le x \le 3\}$	
35.	不等式 $\frac{x-1}{x} \ge 2$ 的角	解集为()		
	A. $(-\infty, -1]$		B. $[-1, +\infty)$	
	C. [-1,0)		D. $(-\infty, -1] \cup ($	$0, +\infty)$
36.	过点 M(-2, m),	N(m,4)的直线的斜率	等于1,则m的值为	b ()
	A. 1	B. 4	C. 1或3	D. 1或4
37.	己知点 A(1,3), B(-	-2, -1). 若直线 l:	y=k(x-2)+1 与线	表段 AB 相交,则 k
	的取值范围是()		
	A. $k \ge \frac{1}{2}$		B. k≤−2	
	C. $k \ge \frac{1}{2}$ 或 $k \le -2$		D. $-2 \le k \le \frac{1}{2}$	

38. 若直线 l: $y=kx-\sqrt{3}$ 与直线 2x+3y-6=0 的交点位于第一象限,则直线 l 的

	$A.\left[\frac{\pi}{6}, \frac{\pi}{3}\right)$	$B.\left(\frac{\pi}{6}, \frac{\pi}{2}\right)$	$C.\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$	$D.\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$
39.	已知圆 C ₁ : (x+1) 则圆 C ₂ 的方程为 (½ 与圆 C₁ 关于直线 x	-y-1=0 对称,
	A. $(x+2)^2+(y-2)^2$	$^{2}=1$	B. $(x-2)^2+(y+2)^2$	$^{2}=1$
	C. $(x+2)^2+(y+2)$	$^{2}=1$	D. $(x-2)^2+(y-2)$	$^{2}=1$
40.	己知点 A(1,2)、 B(3,1),则线段 <i>AB</i> 的重	垂直平分线的方程是	()
	A. 4x + 2y = 5		B. $4x - 2y = 5$	
	C. x + 2y = 5		D. $x - 2y = 5$	
41.	椭圆 $\frac{x^2}{16} + \frac{y^2}{7} = 1$ 的左	右焦点为 F ₁ , F ₂ , 一直	Í线过 F₁交椭圆于 A、	B两点,则△ABF ₂
	的周长为()			
42.		B. 16 (0),则这个曲线是(C. 8	D. 4
	A. 双曲线,焦点在	Ex轴上	B. 双曲线,焦点在	Ey轴上
	C. 椭圆,焦点在 x	轴上	D. 椭圆,焦点在 y	轴上
43.	一动圆与两圆: x ² · 为()	$+y^2=1$ 和 x^2+y^2-8	8x+12=0 都外切,」	则动圆圆心的轨迹
		В. 圆	C. 双曲线的一支	D. 椭圆
44.	抛物线 y²=2px(p>0))上一点M到焦点的即	拒离是a(a> ^p / ₂),则点M	的横坐标是(
	A. $a + \frac{p}{2}$	B. $a - \frac{p}{2}$	C. a+p	D. a-p
45.	某班新年联欢会原定	定的5个节目已排成。	节目单,开演前又增加	口了两个新节目.如
	果将这两个节目插 <i>)</i>	原节目单中,那么	不同插法的种数为(().
	A. 42	B. 30	C. 20	D. 12
46.	8 名学生和 2 位老师	师站成一排合影,2位	位老师不相邻的排法	种数为().
	A. $A_8^8 A_9^2$	B. $A_8^8C_9^2$	C. $A_8^8 A_7^2$	D. $A_8^8C_7^2$

倾斜角的取值范围是()

48.	甲校有 3 600 名学	生, 乙校有 5 400 名	学生, 丙校有 1 800	名学生. 为统计三
	校学生某方面的情	况,计划采用分层抽	曲样法,抽取一个容	量为90的样本,应
	该在这三校分别抽	取的学生人数是().	
	A. 30,30,30	B. 30,45,15	C. 20,30,10	D. 30,50,10
49 .	从一堆苹果中	任取 10 只,称:	得它们的质量如	下(単位: 克):
	125,120,122,105,1	30,114,116,95,120,13	34,则样本数据落在	[114.5,124.5)内的频
	率为().			
	A. 0.2	B. 0.3	C. 0.4	D. 0.5
50.	在长为 12 cm 的结	說段 AB 上任取一点:	M,并以线段 AM 为	边作正方形,则这
	个正方形的面积介	于 36 cm ² 与 81 cm ²	之间的概率为()	
	$A.\frac{1}{4}$	$B.\frac{1}{3}$	$C.\frac{4}{27}$	$D.\frac{4}{15}$
	4	3	21	13

 $D.\frac{\sqrt{3}}{2}$

47. 计算 1-2sin²22.5°的结果等于().

 $A.\frac{1}{2} \qquad B.\frac{\sqrt{2}}{2} \qquad C.\frac{\sqrt{3}}{3}$

数学辅导(二)参考答案

1. C	2. C	3. C	4. D	5. C
6. C	7. D	8. D	9. D	10. B
11. D	12. B	13. C	14. B	15. D
16. D	17. C	18. B	19. C	20. A
21. C	22. A	23. B	24. B	25. B
26. C	27. C	28. A	29. B	30. C
31. C	32. C	33. C	34. C	35. C
36. A	37. D	38. B	39. B	40. B
41.B	42. B	43. C	44. B	45. A
46. A	47. B	48. B	49. C	50. A

西北工业大学现代远程教育 专科人学测试数学辅导(三)

共计 50 道单项选择题,要求从所给出的四个备选项中选出一个符合题目要求的选项,并将正确的答案填入题目后面的括号内。

1.满足 "a∈A 且 8−a∈A,a∈N"的有且只有 2 个元素的集合 A 的个数是().

	A. 1	B. 2	C. 3	D. 4
2.	己知全集 U={1,2,3	3,4,5},集合 A={x x	$x^2-3x+2=0$, B=	$\{x x=2a, a\in A\},$
	则集合[u(A∪B)中方	元素的个数为()。		
	A. 1	B. 2	C. 3	D. 4
3.	不等式 x(x-a+1)>	>a 的解集是{x x<-	-1或x>a},则	().
	A. a≥1	B. a<-1	C. $a > -1$	D. $a \in \mathbf{R}$
4.	已知集合 $M = \left\{ x \middle \frac{x}{x} \right\}$	$\left\{\frac{+3}{-1} < 0\right\}$, $N = \left\{x \mid x\right\}$	<<-3 }, 则集合{x	x≥1}等于().
	A. $M \cap N$		B. $M \cup N$	
	C. $l_{\mathbf{R}}(M \cap N)$		D. $\binom{R}{R}(M \cup N)$	
5.	在下列四个结论中,	正确的是().		
	① "x²>4" 是 "x³·	<一8"的必要不充分	分条件 ;	
	②在△ABC 中,"	$AB^2 + AC^2 = BC^2$ " \mathbb{R}	Ŀ"△ABC 为直角三角	角形"的充要条件;
	③若 a, b∈ R ,则	l "a²+b²≠0" 是 "a	,b全不为0"的充实	要条件;
	④若 a, b∈ R ,则	l "a²+b²≠0" 是 "a	,b不全为0"的充实	要条件.
	A. 112	B. 23	C. 1)4)	D. 124
6.	若 a、b、c∈ R ,a>	b,则下列不等式成	立的是()	
	$A \cdot \frac{1}{a} < \frac{1}{b}$	B. $a^2 > b^2$	$C \cdot \frac{a}{c^2 + 1} > \frac{b}{c^2 + 1}$	D. $a c > b c $
7.	设集合 U={(x, y)	$x \in \mathbf{R}, y \in \mathbf{R}$, $A =$	$\{(x, y) 2x-y+m>0\}$	$B = \{(x, y) x+y\}$
	-n≤0}, 那么点 P	$(2, 3) \in A \cap ([UB])$ 的	充要条件是().	
	A. m>-1, n<5		B. m<-1, n<5	
	C. m>-1, n>5		D. m<-1, n>5	
		19		

8.	不等式 $\left \frac{x-2}{x}\right > \frac{x-2}{x}$ 的解集为().	
	A. (0, 2)	B. (−∞, 0)
	C. $(2, +\infty)$	D. $(-\infty, 0) \cup (0, +\infty)$
9.	若不等式 $ x-2 + x+3 >a$,对于 $x \in \mathbf{R}$ 均成	戏立,那么实数 a 的取值范围是 ().
	A. $(-\infty, 5)$	B. [0, 5)
	C. (−∞, 1)	D. [0, 1]
10.	. 已知函数 $f(x) = \frac{1+x}{1-x}$ 的定义域为 A,函	数 y=f(f(x))的定义域为 B,则().
	A. $A \cup B = B$	$B. A \cup B = A$
	C. $A \cap B = \emptyset$	D. $A \cap B = A$
	定义在 R 上的偶函数 $f(x)$,对任意 x_1 ,	$x_2 \in [0, +\infty)(x_1 \neq x_2), \ \ f(x_2) - f(x_1) < $
0,	则().	D ((1) < ((2) < ((2)
	A. $f(3) < f(-2) < f(1)$	B. $f(1) < f(-2) < f(3)$
	C. $f(-2) < f(1) < f(3)$	D. $f(3) < f(1) < f(-2)$
12.	日知 $f(x) = \begin{cases} 2x, & x > 0 \\ f(x+1), & x \leq 0 \end{cases}$,则 $f\left(\frac{4}{3}\right)$	$+f\left(-\frac{4}{3}\right)$ 等于()
	A2 B. 4	C. 2 D4
13.	若函数 y=ax 与 y= $-\frac{b}{x}$ 在(0,+∞)上者	都是减函数,则 y=ax²+bx
	在(0, +∞)上是()	
	A. 增函数 B. 减函数	C. 先增后减 D. 先减后增
14.	已知函数 $f(x) = \frac{1}{2}x^3 - x^2 - \frac{7}{2}x$,则 $f(-a)$	f^{2})与 $f(-1)$ 的大小关系为()
	A. $f(-a^2) \le f(-1)$	B. $f(-a^2) < f(-1)$
	C. $f(-a^2) \ge f(-1)$	
	D. $f(-a^2)$ 与 $f(-1)$ 的大小关系不确定	
15.	若函数 $f(x)=x^3-6bx+3b$ 在(0,1)内有标	极小值,则实数 b 的取值范围是()
A	A. (0,1)	B. (−∞, 1)
(C. $(0, +\infty)$	$D.\left(0, \frac{1}{2}\right)$

16.	若曲线 y=x ² +ax+	-b 在点(0, b)处的切	线方	5程是 x-y+1=	0,贝	J()
	A. $a=1, b=1$		В.	a=-1, b=1		
	C. $a=1$, $b=-1$		D.	a=-1, b=-	1	
17.	设 p: f(x)=x ³ +2x	x^2+mx+1 在($-\infty$,	+0	○)内单调递增,。	q: m	$\geqslant \frac{4}{3}$,
	则 p 是 q 的()					
	A. 充分不必要条件	‡	В.	必要不充分条件	‡	
	C. 充分必要条件		D.	既不充分也不必	必要条	件
18.	数列{a _n }中, a _n =-	-2n ² +29n+3,则此	数列	川的最大项的值是	<u> </u>)
	A. 107	B. 108	C.	$108\frac{1}{8}$	D. 1	109
19.	已知等差数列{a _n }的	的前 n 项和为 S _n ,若	:OB	$=a_1\overrightarrow{OA}+a_{20}$	2, 且	A、B、C 三
	点共线(该直线不过	L点 O),则 S ₂₀₀ 等于	()		
	A. 100	B. 101	C.	200	D. 2	201
20.	在等比数列中, S_n	是其前 n 项和, 若 S	$S_3 = 7$	7, S ₆ =63, 则公	比q力	是()
	A. 2	B2	C.	3	D. •	-3
21.	已知各项均为正数	的等比数列 $\{a_n\}$, a_1a_2	a ₂ a ₃ =	$=5$, $a_7a_8a_9=10$,		
	则 $a_4a_5a_6=($)					
	A. $5\sqrt{2}$	B. 7	C.	6	D. 4	$4\sqrt{2}$
22.	已知 $\cos \theta$ - $\tan \theta$ < 0 ,	那么角θ是()				
	A. 第一或第二象限	見角	В.	第二或第三象图	見角	
	C. 第三或第四象限	身角	D.	第一或第四象图	見角	
23.	cos 300°=()					
	A. $-\frac{\sqrt{3}}{2}$	B. $-\frac{1}{2}$	$C.\frac{1}{2}$.	$D.\frac{\sqrt{3}}{2}$	3
24.	已知 $\tan \alpha = -\frac{1}{2}, \frac{\pi}{2}$	Ç<α<π,则 sin α 等于	.()		
	$A.\frac{2\sqrt{5}}{5}$	B. $-\frac{\sqrt{5}}{5}$	C.	$-\frac{2\sqrt{5}}{5}$	$D.\frac{\sqrt{3}}{5}$	5
25.	函数 y=sin²x+sin	x-1 的值域为()			
	A.[-1, 1] $B.[$	$-\frac{5}{4}$, -1] C.	$-\frac{5}{4}$, 1] D.		$\left[\frac{5}{4}\right]$

26. 已知向量 a , b	的夹角为 60°,上	$1 \mathbf{a} =2$, $ \mathbf{b} =1$,则证	可量 a 与 a+2b 的夹角等
于()			
A. 150°	B. 90°	C. 60°	D. 30°
27. 已知向量 a =(2	$2, \sin x), \mathbf{b} = (\cos x)$	s²x,2cos x),则函数 f	$f(\mathbf{x}) = \mathbf{a} \cdot \mathbf{b}$ 的最小正周期是
()			
$A.\frac{\pi}{2}$	Β. π	C. 2π	D. 4π
28. 满足 A=45°,	$c=\sqrt{6}$, $a=2$ 的公	ABC 的个数记为 m	,则 a ^m 的值为()
A. 4	B. 2	C. 1	D. 不确定
29. △ABC 中,AB	$3 = \sqrt{3}$, AC=1,	B=30°,则△ABC ī	面积为()
$A.\frac{\sqrt{3}}{2}$	$B.\frac{\sqrt{3}}{4}$	$C.\frac{\sqrt{3}}{2}$ 或 $\sqrt{3}$	$D.\frac{\sqrt{3}}{4}$ $\cancel{\cancel{1}}$ $\cancel{\cancel{1}}$ $\cancel{\cancel{1}}$ $\cancel{\cancel{2}}$
30. 在△ABC中,	lg a−lg b=lgsin F	B=−lg√2, B 为锐角	角,则 A 的值是()
A. 30°	B. 45°	C. 60°	D. 90°
31. 根据下列情况,	判断三角形解的	情况,其中正确的是	<u>-</u> ()
A. $a=8, b=1$	6,A=30°,有两	解	
B. $b=18$, $c=$	20,B=60°,有一	一解	
C. $a=5$, $c=2$,A=90°,无解		
D. $a=30$, $b=$	25, A=150°, 有	一解	
32. 若△ABC 的三	个内角满足 sin A	$\vdots \sin B : \sin C = 5 : 1$	1:13, 则△ABC()
A. 一定是锐角	三角形	B. 一定是直角三	三角形
C. 一定是钝角	三角形		
D. 可能是锐角	三角形,也可能是	是钝角三角形	
33. 已知实数 a、b、	. c 满足 b-a=6-	$-4a+3a^2$, c-b=4-	-4a+a ² ,则 a、b、c 的大
小关系是 ()		
A. c≥b>a		B. a>c≥b	
C. c>b>a		D. a>c>b	
34. 若不等式(a-2)	$)x^2+2(a-2)x-4$	< 0 的解集为 \mathbf{R} ,则实	类 a 的取值范围是()
A. $\{a \mid -2 \le a \le 2\}$	}	B. $\{a \mid -2 \le a \le 2\}$	
C. $\{a \mid -2 \le a \le 2\}$	<u>!</u> }	D. $\{a a \ge 2\}$	

	A. $(-\infty, -1) \cup ($	1, +∞)	B. $(-\infty, -1] \cup [$	1, +∞)
	C. (-1,1)		D. [-1,1]	
36.	设直线1的方程为	$x + y\cos\theta + 3 = 0$)(θ ∈R),则直线1的	倾斜角 α 的范围
	是()			
	Α. [0, π)	$B\left[\frac{\pi}{4}, \ \frac{\pi}{2}\right)$	C. $\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$	$D\left[\frac{\pi}{4}, \ \frac{\pi}{2}\right] \cup \left(\frac{\pi}{2}, \ \frac{3\pi}{4}\right]$
37.	直线 2x-y+3=0	的倾斜角所在区	间是()	
	A. $\left(0, \frac{\pi}{4}\right)$	$B.\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$	$C.\left(\frac{\pi}{2}, \frac{3\pi}{4}\right)$	$D.\left(\frac{3\pi}{4}, \pi\right)$
38.	经过点 P(1,4)的直 线的方程为()	直线在两坐标轴 _	上的截距都是正的,」	且截距之和最小,则直
	A. $x+2y-6=0$		B. $2x+y-6=0$	
	C. $x-2y+7=0$		D. $x-2y-7=0$	
39.	若 PQ 是圆 x ² +y ² =	=9 的弦, PQ 的。	中点是 M (1,2),则直约	线 PQ 的方程是 (
	A. $x+2y-3=0$		B. $x+2y-5=0$	
	C. $2x-y+4=0$		D. $2x-y=0$	
40.	已知圆 $x^2+y^2=4$ 与		-6y+14=0 关于直线	え 1对称,则直线1的方
	程是()			
	A. $x-2y+1=0$		B. $2x-y-1=0$	
	C. $x-y+3=0$		D. $x-y-3=0$	
41.	椭圆 $2x^2+3y^2=1$ 的	的焦点坐标是()	
42.	$A. \left(0, \pm \frac{\sqrt{6}}{6}\right)$ 焦点分别为(-2,0)	B. (0,±1) ,(2,0)且经过点	C. (±1,0) (2,3)的双曲线的标准	$D\left(\pm\frac{\sqrt{6}}{6},\ 0\right)$ 方程为(**)
	A. $x^2 - \frac{y^2}{3} = 1$	$B.\frac{x^2}{3}-y^2=1$	C. $y^2 - \frac{x^2}{3} = 1$	$D \cdot \frac{x^2}{2} - \frac{y^2}{2} = 1$
43.	已知双曲线中心在生	坐标原点且一个	焦点为 $F_1(-\sqrt{5}, 0)$,	点 P 位于该双曲线上,
	线段 PF ₁ 的中点坐	标为(0,2),则该	双曲线的方程是()
	$A \cdot \frac{x^2}{4} - y^2 = 1$	B. $x^2 - \frac{y^2}{4} = 1$	$C.\frac{x^2}{2} - \frac{y^2}{3} = 1$	$D \cdot \frac{x^2}{3} - \frac{y^2}{2} = 1$

35. 不等式(|x|+2)(1-x²)≤0 的解集是 ()

				2 2
44.	已知抛物线的顶点	在原点,对称轴为 x	轴,焦点在双曲线 <mark>x</mark>	$\frac{y}{1} - \frac{y}{2} = 1$ 上,则抛
	物线方程为()			
	A. $y^2 = 8x$	B. $y^2 = 4x$	C. $y^2 = 2x$	D. $y^2 = \pm 8x$
45.	A, B, C, D, E	五人并排站成一排,	如果 B 必须站在 A	的右边(A、B 可以
	不相邻),那么不同]的排法共有().		
	A. 24 种	B. 60种	C. 90 种	D. 120 种
46.	某外商计划在 4 个	·候选城市中投资 3~	个不同的项目,且在	同一个城市投资的
	项目不超过2个,	则该外商不同的投资	方案有().	
	A. 16 种	B. 36种	C. 42 种	D. 60种
47.	已知 α,β 都是锐角	角,若 $\sin \alpha = \frac{\sqrt{5}}{5}$, sin	$n \beta = \frac{\sqrt{10}}{10}$,则 $\alpha + \beta =$	= ().
	$A.\frac{\pi}{4}$	$B.\frac{3\pi}{4}$	$C.\frac{\pi}{4}$ $\pi l \frac{3\pi}{4}$	$D\frac{\pi}{4}\pi l - \frac{3\pi}{4}$
48.	某工厂生产 A, B,	C三种不同型号的产	产品,产品的数量之L	北依次为3:4:7 ,
	现在用分层抽样的	方法抽出容量为n的	J样本,样本中 A 型产	产品有 15 件,那么
	样本容量 n 为().		
	A. 50	B. 60	C. 70	D. 80
49.	老师在班级 50 名学	生中,依次抽取学号	号为 5,10,15,20,25,30,	35,40,45,50 的学生
	进行作业检查,这	种抽样方法是()		
	A. 随机抽样	B. 分层抽样	C. 系统抽样	D. 以上都不是
50.	在面积为 S 的△AE	BC 的边上 AB 上任耶	仅一点 P,则△PBC 的	的面积大于 <mark>S</mark> 的概率
	是().			
	$A.\frac{1}{4}$	$B.\frac{1}{2}$	$C.\frac{3}{4}$	$D.\frac{2}{3}$

数学辅导(三)参考答案

1. D	2. B	3. C	4. D	5. C
6. C	7. A	8. A	9. A	10. B
11. A	12.B	13. B	14. A	15. D
16. A	17. C	18. B	19. A	20. A
21. A	22. C	23. C	24. D	25. C
26. D	27. B	28. A	29. D	30. A
31. D	32. C	33. A	34. C	35. B
36. C	37. B	38. B	39. B	40. D
41. D	42. A	43. B	44. D	45. B
46. D	47. A	48. C	49. C	50. C